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Orthogonality-based label coding is an often-used technique in multi-
class classification. Through coding the labels into some multi-dimen-
sional orthogonal codewords, many binary classifiers can be naturally
extended to multi-class cases. For an unseen sample, the classifiers
firstly estimate its codeword and then compute the corresponding dis-
tances from the labels. Finally, the nearest one is assigned as its class
label. However, these classifiers actually hardly guarantee that the esti-
mated codewords still maintain the inter-orthogonality with the other
classes, which more likely causes the codewords in different classes
overlapping each other to some extent and thus affects the classification
performance. Proposed is a novel label correction strategy which aims
to keep as much as possible orthogonality between the estimated
sample codewords and the other classes’ labels in order to preserve
further as much as possible the inter-orthogonality of the codewords.
The strategy is combined with two state-of-the-art classifiers: regular-
ised least square classifier and the least square support vector machine.
Experiments on UCI datasets demonstrate the effectiveness of the
method.

Introduction: Multi-class classification is widespread in real appli-
cations, such as face recognition, text mining and medical analysis
[1]. Compared to binary classification, multi-class classification is
more delicate, since many existing successful classifiers are basically
designed to focus on binary rather than multi-class issues [2]. Up to
now, many strategies have been developed to solve this problem,
which can fall into three basic categories [2]. The first category is
label coding which can extend some binary classifiers to multi-class
scenarios directly. By transforming the labels into some codewords,
classification is changed into computing the nearest distance between
the estimated sample codewords and the labels. The second category
is decomposing the multi-class problem into several binary classification
tasks that can be efficiently solved using binary classifiers, e.g. the
support vector machine [2]. The corresponding strategies involve
one-versus-all, all-versus-all and error-correcting output coding. The
third category relies on arranging the classes in a hierarchy tree and uti-
lising a number of binary classifiers at the nodes of the tree till a leaf
node is reached [2].

Orthogonality-based label coding is the most often-used coding
format in the first category, where a typical paradigm is one-of-¢
coding. Through transforming the labels into some orthogonal multi-
dimensional codewords, the coding attempts to maximise the diversity
of the classes. Many binary classifiers can directly use these codewords
instead of the one-dimensional binary-class labels to solve multi-class
classification, and aim to make the estimated sample codewords close
to the corresponding label codewords, such as decision trees [3],
neural networks [4], the regularised least square classifier (RLSC) [4]
and the least square support vector machine (LSSVM) [5]. However,
these classifiers basically overlook an important problem — the estimated
sample codewords actually hardly keep the inter-orthogonality as the
label codewords, which more likely leads to the codewords of different
classes overlapping each other to some extent and further increase the
incorrect classification. In this Letter, we present a simple but general
strategy to correct these codewords. By constraining the inner products
between the codewords and the other classes’ labels as an extra regulari-
ser embedded into the original optimisation objectives of these classi-
fiers, the strategy can make the codewords as orthogonal to the other
classes’ labels as possible, and further as close to the corresponding
class’s label as possible. As a result, the strategy can naturally preserve
the inter-orthogonality among the codewords of different classes as
much as possible. To validate the effectiveness of our proposed strategy,
we further apply it in RLSC and LSSVM. The experiments on several
UCI datasets demonstrate that the new methods have much better classi-
fication performance than the original RLSC and LSSVM.

Orthogonality-based label correction in RLSC (OLC-RLSC): Assume a
multi-class dataset{(x;, z,-)}ﬁvzl, where x; € RMandz; € {l,---,C} is
the corresponding class label to x;. Following the orthogonality-based
label coding method, we can code z; into a new C-dimensional vector y;.

Consequently, we obtain the label codeword matrix:
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A simplest thought of preserving the inter-orthogonality is directly
minimising the inner products of the sample codewords in different
classes. However, this may lead to complex optimisation owing to its
non-dual form and destroy the solution framework of RLSC.
Consequently, here we adopt an alternative strategy. We penalise the
inner products of the codewords with the other classes’ labels as a
regulariser, which fully utilises the inter-orthogonality of the labels.
We term the regulariser as an orthogonality-based label correction
regulariser and directly embed it into RLSC [4] to improve OLC-
RLSC. The corresponding objective function of OLC-RLSC can be
described as follows:
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where X =[x, -, xy] ER™N. W =[w,,---,wc] € RM*C is the
wanted discriminant vector matrix. A; and 4, are two regularisation par-
ameters. Obviously, when A,=0, OLC-RLSC will degenerate to the
original RLSC. When A4,#0, by minimising the regulariser,
OLC-RLSC can make the estimated sample codeword w/X in the cth
class orthogonal to the different classes” labels y(©). As a result, w/X
will more approximate to the cth class label p and thus naturally
inherits the inter-orthogonality as the labels.

Similar to RLSC, we can arrive at a convex differentiable function
of w,.:
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The derivative of the function vanishes at the minimiser:
XXTw, =Xy + hw, + 2 Y Xy XNw, =0 (4
c#e

which leads to the following solution:
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Orthogonality-based label correction in LSSVM (OLC-LSSVM):
LSSVM is another state-of-the-art binary classifier which can be directly
generalised to solve multi-class classification analytically. We further
integrate the orthogonality-based label correction strategy with
LSSVM [6] and extend to OLC-LSSVM by solving the following
problem:
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Introducing the Lagrangian with oy ; as Lagrange multipliers:
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The conditions for optimality w.r.t. w., b., e, i for the training
respectively become:
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wherek =1,---,Nandc =1, ---, C. Elimination of w. and ¢ . gives
the linear system:
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Finally, by solving the linear equations (9), we can get the solution

vectors:
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Experiments and analyses: To evaluate the proposed OLC-RLSC and
OLC-LSSVM, we perform some experimental comparisons with
RLSC and LSSVM on several UCI datasets, including Iris(3), Lenses
(3), Tae(3), Balance(3), Ecoli(6) and Yeast(10) where the class
number is shown in the brackets. We randomly select half of each
class for training and the remaining for testing, and repeat the process
ten times. The comparisons are conducted both in the linear and radial
basis function (RBF) kernel versions. All the parameters in the algor-
ithms including regularisation and kernel parameters are chosen from
{2710 279 ..., 2° 2'% by cross-validation. Tables 1 and 2 present
the average classification accuracies (%) and variances in each algorithm
where the best performances are highlighted in bold.

Table 1: Classification results compared between RLSC and
OLC-RLSC, LSSVM and OLC-LSSVM on UCI datasets
with linear kernel

Dataset RLSC OLC-RLSC LSSVM | OLC-LSSVM
Iris 82.93+3.48 | 84.13+3.34 | 91.20+1.30 | 93.33+£0.55
Lenses | 80.00+5.50 | 81.54+8.20 | 77.69 +12.4 | 85.38+5.90
Tae 46.32+2.10 | 48.16 £ 1.10 | 43.68 £2.40 | 47.11+2.10

Balance | 87.15+0.35 | 89.24+£0.49 | 87.83+0.44 | 89.50+0.61
Ecoli 82.26+3.92 | 84.40+3.45 | 86.68+1.66 | 88.33+2.30
Yeast 55.10£1.49 | 56.73 +1.00 | 55.64+0.81 | 57.51+£1.09
Average | 72.29+2.81 | 74.03+2.93 | 73.79+3.17 | 76.86 +2.09

From the Tables, we can see that OLC-RLSC and OLC-LSSVM out-
perform RLSC and LSSVM, respectively, in all the datasets. Especially,
OLC-RLSC exceeds RLSC by more than 2% on the Balance and Ecoli
datasets with the linear kernel, and 3% on the Tae dataset with the RBF
kernel. Meanwhile, OLC-LSSVM exceeds LSSVM by more than 7% on

the Lenses dataset and 3% on the Tae dataset with the linear kernel, and
4% on the two datasets with the RBF kernel. Furthermore, all the algor-
ithms basically perform better with the RBF kernel than with the linear
kernel. However, OLC-LSSVM with the linear kernel has been superior
to LSSVM with the RBF kernel beyond 3% on the Lenses dataset,
which further validates that the proposed label correction strategy can
indeed improve the classifier’s performance in complex multi-class
classifications.

Table 2: Classification results compared between RLSC and
OLC-RLSC, LSSVM and OLC-LSSVM on UCI datasets

with RBF kernel
Dataset RLSC OLC-RLSC LSSVM OLC-LSSVM
Iris 98.27+0.81 [ 98.53+£0.97 | 98.13+0.47 | 98.67 +0.40
Lenses 82.31+6.60 | 83.85+8.50 | 81.77+8.20 | 86.15+6.30
Tae 54.05+5.61 | 57.24+2.40 | 54.47+5.10 | 60.26+2.92

Balance | 90.60+0.56 | 91.95+0.11 | 90.66 +0.12 | 92.69+0.10
Ecoli 88.29+1.59 | 89.40+1.89 | 88.64+1.97 | 90.06+2.35
Yeast 60.07+1.73 | 61.49+1.51 | 60.32+1.97 | 62.18+1.65
Average | 78.93+2.82 | 80.41+2.56 | 79.00+2.97 | 81.67+2.29

Conclusion: In this Letter, a novel orthogonality-based label correction
strategy for multi-class classification is proposed. Through maximising
the orthogonality between the estimated sample codewords and the other
classes’ labels, the strategy aims to maximise the inter-orthogonality
among different class sample codewords in order to guarantee the diver-
sity of classes as much as possible. We further integrate the strategy into
RLSC and LSSVM as an extra regulariser, and obtain two new multi-
class algorithms OLC-RLSC and OLC-LSSVM. Experimental results
on several UCI datasets demonstrate the superiority of the two
algorithms.
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